Lecture Plan Basic Electronics (IEC-101/201)

Units	Lecture	Topics Covered
Unit 1		Semiconductor Diode
	Lecture 1	Introduction to Electronics. Group-IV materials, Covalent
		bond & electron-hole concepts
	Lecture 2	Introduction to Conductor, Semiconductor, Insulator and
		Conductivity & Mobility
	Lecture 3	Numerical problems on Conductivity & Mobility
	Lecture 4	Electrons and hole in semiconductors, donor and acceptor
		impurities
	Lecture 5	Fermi level, Hall Effect, Diffusion, Recombination
	Lecture 6	PN- junction characteristics and its equation, Depletion
		Layer, Zener and Avalanche Breakdown
	Lecture 7	HWR, FWR, capacitive filters, Clippers and clampers
	Lecture 8	Voltage Doubler, LED, Schottky diodes
Unit 2		BJT characteristics and circuits
	Lecture 1	Transistor operations, CE, CB, CC configuration and their
		characteristics
	Lecture 2	Transistor biasing -fixed bias, emitter bias, potential divider
		bias, comparison of biasing circuits
	Lecture 3	Analysis of CE amplifier, concept of voltage gain & current
		gain. Calculation of input and output resistance
	Lecture 4	Stability factor & h parameter model (low frequency) of
	T (F	transistor
	Lecture 5	Computation of Av, Ai, Ri, Ro, of single transistor CE
	L a aturna (Configurations
	Lecture o	Newseries Drehlems 1
	Lecture /	Numerical Problems 2
I	Lecture 8	Field Effect Transistors
Unit 5	Lastura 1	Introduction to EET
	Lecture 1	IFET construction and its working
	Lecture 2	Drain/Transfer Characteristics
	Lecture J	Basic amplifier circuits and biasing of IEET
	Lecture 5	MOSEET: Introduction
	Lecture 6	Enhancement and Depletion type N channel and P. Channel
	Lecture 7	Drain/Transfer Charactersistics
	Lecture 8	Numerical Problems
IInit 4	Lecture o	Switching theory and Logic Cates
	Lecture 1	Introduction to Number System
	Lecture 2	Types of Number System
	Lecture 3	Conversion compliments Addition and Subtraction
	Lecture 4	Boolean Algebra
	Lecture 5	Canonical Form and Standard Form
	Lecture 6	Logic Gates

	Lecture 7	Universal Gates
	Lecture 8	K-maps
Unit 5		Op-Amp and Electronic Instruments
	Lecture 1	Introduction to Operational Amplifier
	Lecture 2	Concept of Ideal Op-Amp(inverting and non-inverting)
	Lecture 3	Inverter, Integrator, differentiator, voltage follower
	Lecture 4	Summing and differential amplifier
	Lecture 5	Electronic Instruments: Digital Multimeter(block diagram
		approach)
	Lecture 6	CRO (block diagram and its working)
	Lecture 7	Measurement of voltage, phase and frequency
	Lecture 8	Numerical Problems in Engineering Services Examinations

References:

- 1. Boylestad and Nashelsky, 'Electronic Devices and circuits' PHI, 8th Edition, 2001.
- 2. Jacob Millman & Christos Halkias, 'INTEGRATED ELECTRONICS', Second Edition, 1984
- 3. M. Morris Mano, 'Digital Design', 4th Edition
- 4. Sedra & Simth, Microelectronics Circuits

Date: 15-07-2013

Teacher:

Er. Piyush Charan Asst. Prof. Dept. of ECE, Integral University, Lucknow