INTEGRAL UNIVERSITY Digital Image Processing (EC-024) IVth year 8th Semester Group: EC2 Quiz-2

Date:

Name:

Branch:

Dall Marshar					
Roll Number:					

1. If the spectrum of a continuous (not sampled) image is the one in fig. 1. a), then the spectrum of its sampled version is, most likely-

- (a). the one in Fig. 1.0 (b) the one in Fig. 1.0
- (b). the one in Fig. 1.c)
- (c). the one in Fig. 1.a)
- (d.) the one in Fig. 1.d)
- 2. The Optimal Filter, Weiner Estimator is used in digital image processing systems to-(a). add noise
 - (b). remove noise
 - (c). minimize noise
 - (d). None of the above

3. The Euclidean distance between p and q where p is (x,y) and q is (s,t) is defined as-

(a). $D_e(p,q) = [(x-s)^2 + (y-t)^2]^{\frac{1}{2}}$ (b). $D_e(p,q) = [(x-s)^3 + (y-t)^5]^{\frac{1}{3}}$ (c). $D_e(p,q) = [(x+s)^2 - (y+t)^2]^{\frac{1}{4}}$ (d.) None of these

- 4. With what other name is City Block or Taxi Cab Distance also known as -
 - (a). Mississippi Distance
 - (b). Malaysian Distance
 - (c). Manhattan Distance
 - (d). None of these
- 5. The two pixels p and q are at points (2,3) and (5,4) respectively. Then calculate D_e , D_4 and $D_8\mathchar`-$
 - (a). $\sqrt{15}$, 8, 9
 - (b). √12, 7, 10
 - (c). $\sqrt{10}$, 4, 3
 - (d.) None of the above
- 6. Which one is the correct formula for calculating D_8 (Chessboard Distance) between points $p \equiv (x,y)$ and $q \equiv (s,t)$ -
 - (a). $D_8(p,q) = \{[x-s], [y-t]\}$
 - (b). $D_8(p,q) = min\{|x-s|, |y-t|\}$
 - (c). $D_8(p,q) = max\{|x-s|, |y-t|\}$
 - (d). $D_8(p,q) = min\{|x+s|, |y+t|\}$
- 7. To adjust the light intensity so that the gray level of individual pixels represent equal increments in light intensity by successive Gray Scale Transformations(GST) is known as -
 - (a). Photo sensitive emmission
 - (b). Photo Detector
 - (c). Photometric Calibration
 - (d). None of these
- 8. The optimality criterion for Weiner Filter is characterized by -
 - (a). Mean Square Estimator
 - (b). Mean Square Error
 - (c). Mean Substituting Equation
 - (d). None of these

